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Abstract 

Aiming at the challenges that traditional intelligent fault diagnosis methods of marine diesel engines often suffer 
low generalizability due to the lack of fault training samples, as well as poor explainability due to the insufficient 
incorporation of domain knowledge on fault mechanism, this paper develops a Thermodynamic Simulation-
assisted Random Forest (TSRF), which reveals fault characteristics through thermodynamic simulations and 
incorporates them as prior knowledge when designing the intelligent fault diagnosis model. Firstly, five 
thermodynamic fault models are developed by fine-tuning the essential system parameters to correspond with 
the distinct attributes of different faults. Then, potential thermodynamic indicators of combustion chamber 
component degradation are identified through numerical simulation results. By calculating SHapley Additive 
exPlanations (SHAP) values, a parameter selection process is conducted to retain only those variables 
demonstrating significant correlations with fault states. Finally, the selected parameters are leveraged to assess 
the condition of the combustion chamber and input into the fault diagnosis model. The proposed TSRF achieved 
exceptional classification performance, illustrating a mean accuracy of 99.07% on the fault dataset constructed 
in this paper. The estimation results of the model are interpreted from the local and global perspectives based 
on SHAP values. As a result, turbocharger exhaust temperature, blow-by heat flow, and cylinder liner heat flow 
are found to contribute significant to fault predictions. 
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1. Introduction 

The diesel engine is a critical component of the ship's propulsion system, with complicated internal structures 
and numerous interrelated parts [1]. In particular, the combustion chamber is crucial to engine functionality, 
and it comprises of the cylinder head, cylinder liner, piston, and other components [2]. Given its harsh 
operational environment, the combustion chamber is one of the most vulnerable sections in diesel engines [3–
5]. Combustion chamber faults may adversely damage engine performance and safety, making fault detection 
vital for engine management. By monitoring thermodynamic parameters, diagnostic models could identify and 
locate defects, giving crucial information for maintenance scheduling, repair plan optimization, and cost control 
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[6–9]. However, diagnosing faults in practical ship operations remains challenging due to factors such as limited 
fault data and nonquantitative prior knowledge. 

Currently, fault diagnosis methods for marine diesel engines are primarily categorized into three types, as 
presented in Table 1: : model-based, data-driven, and hybrid approaches [9–11]. In the model-based methods, 
a mathematical model of the diesel engine is constructed by merging physical laws, engineering knowledge, 
and operational principles. Then, the simulation software is applied to evaluate the model's performance under 
normal and faulty conditions. For example, He et al. [12] constructed a turbocharger efficiency model based on 
a thermodynamic mechanism and applied the T² test statistic for fault detection in diesel engines. Ricardo et al.  
[13] proposed thermodynamic fault models for the intake system, injection system, compression ratio, and fuel 
injection, applying the Levenberg-Marquardt method for parameter estimation to diagnose faults. Antonio et al. 
[14] developed a fault simulator based on a one-dimensional thermodynamic model of a diesel engine to 
accurately identify the symptoms in various fault states. Tang et al. [15] proposed a two-stroke marine diesel 
engine model to predict in-cylinder pressure in real-time and simulated the behavior under a single-cylinder 
fault condition. Moussa et al. [16] investigated a marine diesel engine model based on physical, semi-physical, 
mathematical, and thermodynamic equations, achieving the simulation of various faults. Lamaris et al. [17] 
developed a thermodynamic-based multi-area combustion model and a fault detection approach that leverages 
changes in model constants, which were applied to the fault diagnosis of the main propulsion and auxiliary 
diesel engine units of ships. However, constructing an accurate physical-mathematical model for marine diesel 
engines is exceedingly problematic under current conditions. Such models are often sophisticated and involve 
substantial subject expertise, encountering issues dealing with nonlinearities and interactions between various 
variables and environmental factors. 

Data-driven methods bypass the need for detailed physical modeling of diesel engines. Instead, pre-processed 
data is input into a machine learning model, enabling it to learn fault characteristics and identify potential faults 
autonomously. For example, Hu et al. [18] processed acoustic emission signals through a one-dimensional CNN 
to achieve fault diagnosis of diesel engine exhaust valves with different degrees of blow-by. Yuankai et al. [19] 
proposed a Recurrence Plot and CNN-based approach (RP-CNN) for identifying the wear mechanisms of main 
bearings in marine diesel engines. Guo et al. [20] proposed a multi-scale and multi-view domain adversarial 
network (MMDAN) for identifying various fault types in diesel engines. Wang et al. [21] designed a Random 
Convolutional Neural Network (RCNN), a structure capable of automatically extracting discriminative features 
from vibration signals to identify the health states of diesel engines accurately. Wang et al. [22] proposed a 
novel hybrid fault monitoring method that integrates flow learning with isolation forests, enabling the model to 
achieve more accurate diagnostic results even with minor sample conditions. However, data-driven models rely 
on learning features from data rather than explicit physical laws, which makes it challenging to explain their 
decision-making rationale—especially in complicated models like deep learning. The intricate non-linear 
relationships and high-dimensional feature interactions often render these models opaque, turning them into 
black boxes where the reasoning behind decisions is difficult to interpret.  

The hybrid approaches generally begin with a physical-mathematical fault model, then its calibration using 
experimental data. Diagnosis is then conducted based on simulation output or experimental and simulated data. 
For example, Yu et al. [23] constructed a digital physical model based on virtual prototyping and multi-body 
dynamics. By applying a data-driven approach, they extracted and selected features from actual and simulated 
signals to detect planetary gearbox faults via feature matching. Gryllias et al. [24] proposed a hybrid two-stage 
one-against-all support vector machine method based on physical model training to diagnose rolling bearing 
faults automatically. Li et al. [25] developed a transfer learning approach based on deep learning, which trains 
models using simulated data and applies them to fault diagnosis in real-world physical processes. Yan [26] 
proposed a generative adversarial network model incorporating a physical model for fault detection and 
diagnosis in air handling units. However, these approaches lack a detailed analysis of the decision-making 
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process of models when integrated with the physical model. Instead, the physical models primarily serve as 
tools for fault simulation and sources of complementary data. 
Table 1 Summary of previous studies 

Method Type Advantages Limitations 

Model-Based Methods 1. Clear physical interpretation. 

2. Suitable for systems with well-understood 
mechanism. 

1. Lack of flexibility and adaptability. 

2. Struggle with complex nonlinear systems. 

Data-Driven Methods 1. High adaptability. 

2. Suitable for big data scenarios. 

1. Highly dependent on data quality and quantity. 

2. Poor explainability. 

Hybrid Methods 1. Relatively higher accuracy. 

2. Better interpretability. 

1. High model complexity. 

2. High computational cost. 

Aiming at the above problems, this paper develops a fault diagnosis method for combustion chamber 
components, named Thermodynamic Simulation-assisted Random Forest (TSRF). Firstly, a one-dimensional 
thermodynamic model of a marine diesel engine is established. The model parameters are then calibrated with 
testing data, facilitating the simulation of five faults in combustion chamber components. To minimize 
computational complexity, SHAP values are calculated for each thermodynamic parameter, and those with high 
SHAP values are considered as key parameters. Finally, the selected parameters are leveraged for classification 
using Random Forest (RF), and the results are compared to different machine learning as well as feature 
selection methods. The evaluation framework incorporates both local and global interpretation perspectives 
based on SHAP values. Local interpretation identifies critical parameters contributing to individual fault sample 
through detailed waterfall plot analysis, while global significance assessment employs beeswarm plots to 
evaluate parameter contributions across the entire fault state. Further, parameters interaction plots and 
dependency plots are presented based on SHAP interaction values. The main innovations of this paper are 
summarized as follows: 

(1) This paper develops a novel parameter fine-tuning method for modeling marine diesel engine combustion 
chamber faults, including head cracking (F1), piston ablation (F2), liner wear (F3), ring wear (F4), and ring 
sticking (F5). Traditional methods typically emphasize microscopic material properties under fault conditions, 
which are often associated with extended simulation durations, intricate processes, and a limited scope of 
thermodynamic parameter analysis. In contrast, the proposed method reproduces the fault characteristics 
through parameter fine-tuning to obtain a rapid system response to combustion chamber faults. 

(2) This study evaluates the suitability of the SHAP method for parameter selection in combustion chamber 
fault diagnosis, comparing its performance with other feature selection methods, including the Chi-Square Test, 
Recursive Feature Elimination (RFE), and the Gini index. Through the computation of SHAP values, a 
quantitative assessment of parameter importance is conducted, enabling the meticulous selection of high-
contribution parameters. Furthermore, the research incorporates advanced visualization techniques to elucidate 
the model's decision-making process, providing transparent insights into the specific mechanisms through 
which critical parameters influence fault classification outcomes.  

(3) This paper presents a novel dual-perspective interpretation through data-driven method assisted by 
thermodynamic model in the decision-making process of RF for combustion chamber fault diagnosis. By 
leveraging the mechanistic foundation and physical interpretability provided by thermodynamic models, this 
method provides a novel insight into interpretable fault diagnosis for marine diesel engine combustion chamber 
faults. 
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The rest of the paper is arranged as follows: In section 2, the proposed TSRF is introduced, including 
thermodynamic modeling, parameter selection and interpretability methods. In section 3, the simulation results 
are theoretically analyzed. Results and discussions are presented in section 4. 

2. Methodology 

2.1. Overview 

The proposed TSRF method for marine diesel engines is illustrated in Fig. 1. Firstly, a one-dimensional 
thermodynamic model is constructed, and the model is calibrated with data acquired from the Data Collecting 
Module (DCM). Secondly, five representative combustion chamber fault scenarios are simulated through fine-
tuning of critical system parameters, enabling the extraction of potentially diagnostic-relevant thermodynamic 
indicators. Then, RF is leveraged for preliminary fault identification, followed by SHAP value computation to 
facilitate the selection of optimal parameter subsets for diagnostic analysis. The final stage incorporates multi-
perspective model interpretation, combining SHAP value analysis with thermodynamic model insights to 
provide comprehensive diagnostic understanding. 

 

Fig. 1. Structure of TSRF 
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2.2. One-dimensional thermodynamic model of marine diesel engine 

2.2.1. Model description 

The structure of the one-dimensional thermodynamic model of the diesel engine is shown in Fig. 2, including 
the system boundary (SB1, SB2), intake and exhaust manifolds (PL1, PL2), turbocharger (TC1), intercooler 
(CO1), and six cylinders (C1 to C6). In addition, six monitoring points (MP1 to MP6) are established for 
monitoring critical parameters. For piping, pipe 1 indicates the compressor intake pipe, pipe 2 refers to the 
intercooler intake pipe, and pipe 3 is the intercooler exhaust pipe. Pipes 4 to 9 correspond to the intake pipes of 
the cylinders, while pipes 10 to 15 are the exhaust pipes of the cylinders. Pipe 16 is connected to the 
turbocharger's inlet pipe, and pipe 17 is the exhaust pipe of the turbocharger. The main specifications of the 
diesel engine are shown in Table 2.  

 

Fig. 2. One-dimensional thermodynamic model of the diesel engine 

Table 2. Engine specifications 

Engine Characteristic Specifications Engine Characteristic Specifications 

Cylinder bore 620 mm Number of cylinders 6 

Piston stroke 2658 mm Arrangement of cylinders Inline 

Speed range 77 to 103 rpm Firing Order 1-5-3-6-2-4 

Mean piston speed 9.13 m/s Cycle Type 2-stroke 

Power 2900 kW Stroke / bore ratio 4.29 

2.3. Thermodynamic fault modeling 

This study categorizes the health states of combustion chamber components into six distinct conditions, 
designated as F0 through F5: normal state (F0), head cracking (F1), piston ablation (F2), liner wear (F3), ring 
wear (F4), and ring sticking (F5). This subsection systematically elucidates the parameter fine-tuning method 
for the five fault states (F1-F5), followed by a comprehensive analysis of their respective failure mechanisms 
and underlying physical principles. 

2.3.1. Cylinder head cracking (F1) 
The cylinder head cracking is numerically investigated by fine-tuning the surface temperature of the cylinder 

head. Under operational conditions, the cylinder head experiences significant thermomechanical loading, 
predominantly in the combustion chamber-adjacent regions [27]. The initiation and propagation of cracks in 
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these critical zones substantially degrade the structural integrity, thereby exacerbating localized stress 
concentration phenomena. Moreover, crack formation detrimentally affects the thermal dissipation, inducing 
localized thermal runaway through compromised heat dissipation efficiency.  

2.3.2. Piston ablation (F2) 
The piston ablation is numerically simulated through fine-tuning two critical parameters: surface temperature 

distribution and blow-by mass flow rate. The progressive degradation of piston surface material induces 
substantial thermal inhomogeneity, resulting in localized temperature elevation [28]. Furthermore, the material 
loss associated with thermal ablation compromises the piston-cylinder interface integrity, thereby exacerbating 
blow-by phenomena through increased gas leakage pathways. 

2.3.3. Liner wear (F3) 
The liner wear simulation is implemented through fine-tuning the bore diameter and corresponding blow-by 

mass flow characteristics. The primary wear mechanism originates from the infiltration of particulate 
contaminants, typically resulting from air filtration system failure or sealing interface degradation. These 
abrasive particles induce progressive material removal from the liner surface, manifesting as measurable 
roundness deviations and localized bore diameter enlargement. Such geometric alterations significantly degrade 
the sealing efficacy of the piston-liner interface, consequently amplifying blow-by phenomena through 
enhanced gas leakage pathways [29]. 

2.3.4. Ring wear (F4) 
The piston ring wear simulation is conducted through controlled modulation of blow-by mass flow 

parameters. The predominant wear mechanism stems from the presence of abrasive contaminants within the 
cylinder assembly, which induce progressive material degradation of the ring surface. This wear process leads 
to measurable geometric deviations, particularly out-of-roundness deformation of the ring end face. Such 
geometric imperfections significantly compromise the ring-cylinder sealing integrity, thereby establishing a 
positive feedback loop that exacerbates blow-by phenomena through increased blow-by [30]. 

2.3.5. Ring sticking (F5) 
The ring sticking is simulated through fine-tuning three critical parameters: bore diameter, liner surface 

temperature, and blow-by mass flow. This fault mode primarily originates from three contributing factors: 
excessive carbonaceous deposits, insufficient lubrication film formation, and sludge accumulation, which 
impede normal ring mobility and degrade sealing performance [31]. Under normal operating conditions, piston 
rings serve as essential thermal conduits, facilitating efficient heat transfer from the piston crown to the cylinder 
walls. However, ring sticking induces significant thermal resistance at the ring-liner interface, leading to 
substantial temperature elevation at the piston surface. Furthermore, this condition creates abnormal frictional 
interactions between the ring and liner surfaces, resulting in accelerated wear mechanisms and potential surface 
scoring of the cylinder liner. 

2.4. Selection of thermodynamic parameters via Tree SHAP analysis 

This paper presents a process for thermodynamic parameter selection leveraging SHAP values, as illustrated 
in Fig. 3. Firstly, potentially diagnostic-relevant thermodynamic parameters are filtered from the fault 
simulation output to comprise the preliminary dataset. Then, the dataset is input into RF for pre-identification. 
Building upon initial results, the Tree SHAP method is employed to quantitatively evaluate the contribution 
weights of individual parameters through SHAP value computation. The final stage involves the selection of 
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optimal feature subsets based on parameter importance rankings, generating a refined dataset that is 
subsequently re-analyzed through the RF model for enhanced diagnostic accuracy. 
Table 3 Comparison of feature selection methods 

Method Type Computational 
Cost 

Model 
Dependency 

Interaction 
Effects 

Nonlinear 
Relationships 

Interpretability Fairness 

Chi-Square Test Filter Low None × × Statistical 
Significance 

Low 

RFE Wrapper High Logistic 
Regression 

√ × Model Weights Medium 

Gini index Embedded Medium Random 
Forest 

√ √ Split Gain Medium 

SHAP Explainability High Model-
Agnostic 

√ √ Global + Local 
Contributions 

High 

Compared to conventional feature selection methods, including the Chi-Square Test, RFE and Gini index, 
SHAP offers a comprehensive evaluation framework for thermodynamic parameter significance. This advanced 
method not only quantifies parameter importance but also elucidates directional influences (positive/negative 
effects), reveals parameter interaction dynamics, and characterizes sample distribution patterns. Such 
multifaceted analysis provides robust empirical support for investigating underlying physical mechanisms 
through thermodynamic modeling and uncovering potential parameter correlations. The comparative analysis 
between SHAP-based feature selection and traditional methods is presented in Fig. 3. 

In this subsection, the calculation of SHAP values is presented in detail, concentrating on describing the core 
concept and computational process of the improved method for tree structures, known as Tree SHAP. 

 

Fig. 3. SHAP-based parameter selection process 
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2.4.1. SHAP value 
SHAP has been extensively employed in machine learning, including feature selection and enhanced model 

interpretability, etc [32–38]. Within the SHAP value computation process, the concept of contribution value 
serves as a quantitative metric to characterize the influence of individual thermodynamic parameters on model 
predictions. The marginal contribution ∆௩௔௟(݅, ܵ)  of a thermodynamic parameter ݅ , when introduced to a 
specific parameter combination (as illustrated in Fig. 4a), is mathematically expressed through the following 
equation [39]: 

( , ) ( { }) ( )val i S f S i f S  
 (1) 

where ܵ represents the set of parameters excluding parameter ݅; ݂(ܵ) is the contribution generated by the set ܵ; 
݂(ܵ ∪ {݅}) is the contribution when parameter ݅ is added. 

After evaluating all possible parameter combinations, the average incremental contribution of parameter ݅, 
known as the SHAP value ߮௜, can be calculated as follows [40]: 

{ }

| | !( | | 1)! ( , )
!i val

S N i

S p S i S
p




 
 
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where ܰ is the set of all parameters; ܵ is a subset of the parameters used in the model; ܰ ∖ {݅} encompasses all 
feasible parameter combinations excluding the target parameter ݅; ݌ denotes the number of parameters in the 
subset ܵ. 

During the evaluation of a specific parameter combination ܵ, the aggregate assessment is obtained through 
the linear superposition of individual parameter SHAP values, as illustrated in Fig. 4(b). Consequently, the 
composite SHAP value for parameter combination ܵ  is mathematically determined by the following 
formulation: 

0
1

( )
M

i
i

f S  


 
 

(3) 

where: ߮଴  is the baseline value, which represents the average output of the model without any parameter; 
∑ ߮௜

ெ
௜ୀଵ  is the sum of SHAP values predicted by each parameter for the model. 

2.4.2. Tree SHAP 
Tree SHAP represents an optimized computational approach specifically developed for tree-based models, 

including Random Forest and other tree-structured algorithms [41–43]. This method capitalizes on the inherent 
hierarchical architecture of tree models to achieve substantial computational efficiency gains compared to 
conventional SHAP value computation methods. As shown in Fig. 4(c), traditional SHAP value calculation 
requires exhaustive traversal of all possible parameter combinations, leading to significant computational 
overhead and exponential complexity growth with increasing parameter dimensionality. 

The Tree SHAP algorithm fundamentally differs by computing marginal contributions exclusively along 
decision paths that satisfy specific input conditions (illustrated by the ݅ଵ > 5 condition in Fig. 4d). This strategic 
optimization eliminates the necessity for complete parameter combination enumeration, thereby achieving 
remarkable computational efficiency improvements. For a given parameter ݅ within a decision tree structure, 
the Tree SHAP-based value is computed through the following mathematical formulation [44]: 
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where ܶ represents the total number of decision trees in the ensemble model; ௝ܲ denotes the complete set of 
decision paths within the ݆-th tree structure; ௝ܲ ∖ {݅} encompasses all feasible parameter combinations excluding 
the target parameter ݅; ܵ corresponds to the selected feature subset utilized in the model; and ݌ indicates the 
cardinality of the parameter subset ܵ. 

2.5. Classification model 

This paper employs RF as the base model for both parameter selection and fault classification tasks. This 
ensemble learning method shows superior capability in handling multi-class classification problems with 
limited sample sizes, while maintaining low preprocessing requirements. These characteristics render RF 
particularly effective for the complex multi-parameter fault diagnosis scenarios addressed in this research.  Due 
to the continuity of thermodynamic parameters, a discretization process is implemented to transform these 
variables into appropriate formats compatible with the decision tree's input specifications. 

 

Fig. 4. Details of the SHAP algorithm: (a) Marginal contribution; (b) Additivity of SHAP values; (c) Calculation of SHAP; (d) Calculation 
of Tree SHAP.  
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2.5.1. Parameters discretization 
The decision tree, serving as the fundamental component of RF, operates through recursive partitioning of 

the feature space to generate predictive outcomes. For a given sample set ܦ, where ݌௞ represents the proportion 
of samples belonging to the ݇-th class (݇ = 1,2, … , ܰ), the information entropy of ܦ is defined as [45]: 

2
1

Ent( ) logk k
k

N

D p p


   (5) 

When partitioning sample set ܦ using a discrete attribute ܽ = {ܽଵ,  ܽଶ, … , ܽே}, which generates ܸ distinct 
branch nodes, the subset of samples in the ݒ-th branch node that satisfy the condition ܽ = ܽ௩ is denoted as ܦ௩. 
The information entropy of ܦ௩ can be computed using Equation (5). To account for varying sample sizes across 
different branch nodes, a weighting factor |ܦ௩|/|ܦ| is applied, enabling the calculation of information gain 
achieved through attribute-based partitioning [46]: 
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The magnitude of information gain serves as a quantitative indicator of an attribute's effectiveness in data 
category discrimination and uncertainty reduction. Attributes demonstrating higher information gain values are 
consequently prioritized for selection as splitting nodes within the decision tree structure. 

Regarding thermodynamic parameters (e.g., temperature, pressure, and rotational speed), a discretization 
process is essential due to their continuous nature. For a given fault set ܦ and continuous parameter ܲ, where 
ܲ  assumes ܰ  distinct ordered values {ܲଵ,  ܲଶ, … , ܲே}  in descending order, an optimal division point ݐ  is 
established. This division point segregates the samples into two subsets: ܦ- 

t (samples with parameter values ≤
 +ܦ and (ݐ

t  (samples with parameter values > ,within the interval [ܲ௜ ݐ Notably, any division point .(ݐ ܲ௜ାଵ] 
yields identical partitioning results for adjacent values ௜ܲ  and ௜ܲାଵ. Therefore, for parameter ܲ, the candidate 
division points can be systematically determined by computing the median value (ܲ௜ +  ܲ௜ାଵ)/2 for each 
interval [ܲ௜, ܲ௜ାଵ], resulting in the complete set of candidate division points ௉ܶ: 
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Consequently, the information gain achieved through partitioning the fault dataset ܦ using parameter ܲ can 
be expressed as [47]: 
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(8) 

When the computed Gain (ܦ , ܲ) is sufficiently high, parameter ܲ  demonstrates superior discriminative 
capability and is consequently prioritized for selection as a splitting node in the decision tree architecture. 
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2.5.2. Random forest 
RF is an ensemble learning method that has demonstrated significant efficacy in fault diagnosis applications 

[48–51]. This algorithm enhances predictive performance through the strategic aggregation of multiple 
independent decision trees, effectively mitigating individual tree biases and variances. For a given sample 
characterized by thermodynamic parameter values ݔଵ, ଶݔ  generated by (ݔ)ே the collective prediction ேܶݔ … 
an ensemble of n independently trained decision trees can be expressed as [52]: 

1

1( ) ( )
N

N
b

T x T
N

x


   (9) 

Within the classification framework of random forests, two predominant metrics are conventionally 
employed for feature selection: the Gini index and entropy-based information gain. This research adopts the 
Gini index as the primary feature selection criterion. The Gini index, quantified within the interval [0, 1], serves 
as an inverse indicator of feature importance, where 0 signifies maximal information gain (denoting the most 
significant parameter) and 1 represents minimal information gain (indicating the least significant parameter). 
The mathematical formulation of the Gini index is expressed as follows [53]: 

2

1
( ) 1

C

i
i

Gini D p


   (10) 

where ݌௜  is the proportion of category ݅ in the dataset, and ܥ is the number of categories. 

3. Simulation of thermodynamic model 

3.1. Data collection 

3.1.1. Testing dataset 
The testing dataset employed in this study is acquired from the mainframe sensor system of a prominent 

shipbuilding equipment manufacturer in China. The raw data collection is facilitated through an independently 
developed Data Collection Module (DCM) integrated with the marine propulsion system, as shown in Fig. 5. 
The DCM system implements hierarchical acquisition architecture, enabling synchronous data collection from 
multiple subsystems, including fast signal unit, tail gas treatment unit, and monitoring system. 

The system records raw data at 10-second intervals, storing the information in an onboard database. To 
mitigate noise interference, a moving average is computed every 60 seconds. Following data encryption, the 
system transmits compressed CSV files containing average data from 720 sampling points to a shore-based 
server via maritime satellite every 12 hours, ultimately forming a six-month time-series dataset of marine diesel 
engine operations. The raw data undergoes rigorous preprocessing, including elimination of blank and duplicate 
records, interpolation of missing values, and anomaly detection and correction through a sliding window 
algorithm. 

Following data preprocessing, an initial screening is conducted by referencing the vessel's operational 
manual, during which thermodynamic parameters exhibiting low relevance to the marine diesel engine are 
eliminated. Subsequently, the dataset undergoes further refinement by aligning with the specific data types that 
can be effectively monitored by the simulation model. This two-stage screening process establishes a robust 
foundation for subsequent model validation and performance evaluation. 
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Fig. 5. Structure of the Data Collecting Module 

3.1.2. Experimental dataset 
The experimental samples are extracted from simulation results encompassing a complete operational cycle 

of the diesel engine model, with each health state comprising 120 samples. Given the substantial variation in 
value ranges and measurement scales across different thermal parameters, direct utilization of raw data would 
introduce bias in the training process, particularly in weight assignment. To address this issue, min-max 
normalization is implemented to standardize the parameter value ranges, ensuring equitable contribution from 
all features during model training. Following normalization, samples are randomly divided into a training 
dataset (70%) and a testing dataset (30%) proportionally. 

3.2. Model validation 

A representative data window is selected from the testing dataset during stable speed of the engine, and the 
values of key thermal parameters are averaged to validate the model. As shown in Table 4, the thermodynamic 
parameters from simulation results exhibit less than 5% deviation from experimental measurements under 
nominal operating conditions. This level of agreement confirms the model's reliability, enabling its effective 
utilization for both fault simulation scenarios and comprehensive diesel engine performance analysis. 
Table 4. Validation of model validity 

Item Experimental value Simulation value Error 

Power (kW) 2900 2895 -0.17% 

Engine speed (rpm) 86.011 90 +4.64% 

Temperature of exhaust gas before turbocharger (℃) 378.953 370.557 -2.22% 

Temperature of exhaust gas after turbocharger (℃) 240.464 230.254 -4.25% 

Inlet cooling water temperature of air cooler (℃) 36.101 37.521 +3.93% 

Outlet cooling water temperature of air cooler (℃) 45.661 44.385 -2.79% 

Temperature of cylinder liner (℃) 122.299 125.512 +2.63% 

Temperature of exhaust gas (℃) 306.897 301.525 -1.75% 
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3.3. Fault modeling 

This paper develops a systematic parameter fine-tuning method to emulate specific combustion chamber 
fault states, including head cracking (F1), piston ablation (F2), liner wear (F3), ring wear (F4), and ring sticking 
(F5). However, the established parameter ranges require further optimization to address potential discrepancies 
between simulation outcomes and actual operational conditions. Future research directions will focus on 
conducting detailed investigations into varying severity levels within individual fault modes, thereby enhancing 
the diagnostic precision and practical applicability of the model. Detailed information regarding the parameter 
calibration for each fault type can be found in Table 5. 
Table 5. Details of fault parameters 

Label Fault type 
Parameters 

Blow-by mass 
flow (Kg/s) Bore (mm) Piston surface 

temp. (℃) 
Cylinder head 
surface temp. (℃) 

F0 Normal 0 620 276.85 246.85 

F1 Head cracking 0 620 276.85 346.85 

F2 Piston ablation 0.01 620 376.85 246.85 

F3 Liner wear 0.03 620.1 276.85 246.85 

F4 Ring wear 0.02 620 276.85 246.85 

F5 Ring sticking 0.02 620.1 326.85 246.85 

3.4. Results of fault simulation 

In this paper, 14 thermodynamic parameters that exhibit significant diagnostic potential for combustion 
chamber condition assessment are identified. Details about these parameters are presented in Table 6. The 
variations of these parameters under various fault conditions are depicted in Fig. 6(a)-(n), with the crank angle 
represented on the horizontal axis and the amplitude of the parameters displayed on the vertical axis. 
Table 6. Thermodynamic parameters of the simulation output 

Label Parameters Unit 

P01 Cylinder Pressure Pa 
P02 Cylinder Temperature K 
P03 Piston Wall Heat Flow J/deg 
P04 Head Wall Heat Flow J/deg 
P05 Liner Wall Heat Flow J/deg 
P06 Blow-By Heat Flow J/deg 
P07 Blow-By Mass Flow Kg/s 
P08 Turbine Power J/s 
P09 Pressure of Exhaust Pa 
P10 Temperature of Exhaust K 
P11 Pressure of Exhaust Gas before Turbocharger Pa 
P12 Temperature of Exhaust Gas before Turbocharger K 
P13 Pressure of Exhaust Gas after Turbocharger Pa 
P14 Temperature of Exhaust Gas after Turbocharger K 
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4. Results and discussion 

4.1. Parameters selection 

Given the extensive array of thermodynamic parameters in diesel engines, comprehensive monitoring of all 
parameters for diagnostic purposes proves impractical. Consequently, a parameter selection process is 
implemented to identify the most diagnostic relevant parameters. This approach achieves an optimal balance 
between minimizing the number of monitored parameters and maintaining robust fault differentiation capability. 

The SHAP values of the 14 parameters in six health states are shown in Fig. 7(a) and summarized in Fig. 
7(b), with the horizontal axis denoting the mean SHAP values, and the vertical axis listing the 14 
thermodynamic parameters ordered by importance from highest to lowest. Fig. 7(c) further illustrates the 
distribution of the percentage of importance scores for each parameter. As a result, eight core parameters with 
the highest cumulative contribution rate are selected for fault identification, including: P14 (Temperature of 
Exhaust Gas after Turbocharger), P05 (Liner Wall Heat Flow), P06 (Blow-By Heat Flow), P07 (Blow-By Mass 
Flow), P11 (Pressure of Exhaust Gas before Turbocharger), P12 (Temperature of Exhaust Gas before 
Turbocharger), P03 (Piston Wall Heat Flow), and P04 (Head Wall Heat Flow). 

 
Fig. 6. Results of fault simulation: (a) Cylinder pressure; (b) Cylinder temperature; (c) Piston wall heat flow; (d) Head wall heat flow; (e) 
Liner wall heat flow; (f) Blow-by heat flow; (g) Blow-by mass flow; (h) Turbine power; (i) Pressure of exhaust gas before turbocharger; 
(j) Temperature of exhaust gas before turbocharger; (k) Pressure of exhaust gas after turbocharger; (l) Temperature of exhaust gas after 
turbocharger; (m) Pressure of exhaust; (n) Temperature of exhaust. 
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Fig. 7. Importance of thermodynamic parameters based on SHAP values: (a) Heat map of SHAP values; (b) Bar stacking chart, (c) 
Percentage chart. 

4.2. Model evaluation 

Given the limited sample size, this study implements an optimized hyper-parameter tuning strategy 
combining grid search method with five-fold cross-validation for all machine learning models under comparison. 
The optimal parameter configurations for K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and 
RF are presented in Table 7. The evaluation metrics across six health states for both the original dataset and the 
optimized parameter subset, including precision, recall, F1 score, and accuracy, are presented in Table 8. The 
confusion matrices and Precision-Recall curves for each model's performance on these datasets are illustrated 
in Fig. 8 and Fig. 9, respectively. 

The confusion matrices reveal distinct performance of models: KNN exhibits relatively low accuracy in 
recognizing F3-F5 fault conditions on the original dataset, as shown in Fig. 8(a). However, its diagnostic 
capability for these fault conditions shows noticeable improvement when utilizing the optimal parameter subset, 
as depicted in Fig. 8(d). SVM exhibits suboptimal performance in identifying F1 and F4 faults on the original 
dataset (see Fig. 8b), with its recognition accuracy for these faults improving on the optimized parameter subset, 
albeit at the cost of reduced performance for F3 detection, as shown in Fig. 8(e). In comparison, RF initially 
underperforms in F5 fault recognition on the original dataset (see Fig. 8c) but achieves superior overall 
performance across all six health states when employing the optimal feature subset, as shown in Fig. 8(f). While 
its ability to differentiate between F4 and F5 faults is slightly diminished, it is noteworthy that both fault types 
are piston ring-related and exhibit similar system impact patterns. The evaluation shows that RF outperforms 
both SVM and KNN on the experimentally constructed fault dataset. 
Table 7 Selection of hyperparameters for models 

Model Core hyperparameters for training 

KNN n_neighbors: 3 metric: manhattan weights: distance 

SVM C: 1.0 kernel: linear gamma: scale 

RF n_estimators: 20 max_depth: None max_features: sqrt 

Table 8. Comparison of the performance of various models. 

Model 
Performance evaluation (on the original dataset, %) Performance evaluation (on the optimal subset, %) 

Precision Recall F1-score Accuracy Precision  Recall F1-score Accuracy 

KNN 90.94±3.72 89.81±3.43 90.03±3.72 89.81±3.73 95.14±3.10 94.44±3.23 94.54±3.25 94.44±3.24 

SVM 92.91±2.33 92.13 ±2.42 91.90±2.02 92.13±2.72 95.55±2.13 94.44±2.73 94.41±1.52 94.44±1.85 

RF 94.66±0.73 94.44 ±0.52 94.41±0.33 94.44±0.46 99.12±0.45 99.07±0.66 99.07±0.51 99.07±0.46 
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Fig. 8 Confusion matrix: (a)-(c) present the confusion matrices of KNN, SVM and RF on the original dataset, respectively; (d)-(f) present 
the confusion matrices of KNN, SVM and RF on the optimal subset, respectively.  

 
Fig. 9 Precision-Recall curves: (a)-(c) present the Precision-Recall curves of KNN, SVM and RF on the original dataset, respectively; (d)-
(f) present the Precision-Recall curves of KNN, SVM and RF on the optimal subset, respectively.  
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To establish a comprehensive comparative analysis, multiple feature selection methods are implemented, 
with the resulting optimal parameter subsets from each method visually presented in Fig. 10. Utilizing RF as 
the classification model, each optimized parameter subset is evaluated for diagnostic performance, with average 
accuracy summarized in Table 9. The results reveal that the parameter subset obtained through SHAP exhibits 
superior diagnostic capability compared to subsets derived from alternative feature selection methods. 

 

Fig. 10 Optimal subset of different feature selection methods 

Table 9 Accuracy of RF using different feature selection methods 

Method Average accuracy (%) 

Chi-Square Test  78.51± 0.53 

RFE  81.62± 0.22 

Gini index 88.95± 0.45 

SHAP 99.07±0.21 

4.3. Interpretation assisted by thermodynamic model 

To demonstrate the enhanced interpretability assisted by thermodynamic modeling, this study employs 
piston ring failure (F4) as a representative case study. The analysis adopts a dual-scale approach, initially 
examining the model's decision-making mechanism at the individual sample perspective, followed by a global 
perspective of the fault characteristics. 

4.3.1. Individual sample analysis 
The waterfall plot is leveraged as an effective visualization tool for analyzing individual sample significance 

assessment, as illustrated in Fig. 9(a). The information in the waterfall plot is interpreted as follows: 
(1) The waterfall plot begins at the bottom with the expected value [(ݔ)݂]ܧ of the model outputs. 
(2) Each horizontal bar quantitatively represents a parameter's contribution magnitude and direction, with 

red bars indicating positive contributions and blue bars denoting negative influences. 
(3) The terminal value ݂(ݔ) is computed through the algebraic summation of all individual parameter 

contributions, representing the model's final prediction for the specific sample. 
As shown in Fig. 11(a), certain parameter values directly influence the predictive direction of the model. 

However, the relationship between these values and the standard reference values is not immediately apparent. 
By integrating the output from the thermodynamic model in Fig. 6, it becomes clear that at specific moments, 
such as P06=1.641, P07=-0.024 and P12=728.568, the values of P14 and P04 are significantly low, which 
negatively affects the model’s predictions. Given that piston ring wear exacerbates the blow-by, this 
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phenomenon is incorporated into the fault model as prior knowledge. The presence of blow-by increases the 
values of P14 and P04, which directly contradicts the low values observed at the sample points, ultimately 
reducing the model’s prediction accuracy. 

4.3.2. Global interpretation 
In this paper, the evaluation results of all samples of F4 fault state are summarized, and the distribution of 

the samples, induced by variations in thermodynamic parameters, are presented through beeswarm plots (see 
Fig. 11b). Further, the average SHAP value for each parameter is combined with beeswarm plots, facilitating a 
more intuitive representation of the importance distribution of each parameter. The information in the beeswarm 
plots is interpreted as follows: 

(1) The y-axis displays the parameters arranged by their level of importance, with each bar representing the 
mean Shapley value for that parameter. 

(2) Each sample is illustrated by a dot, where the x-axis position of the dot corresponds to the SHAP value, 
and the dots are stacked within each row to depict their density. 

(3) Colors are utilized to represent the raw values of the parameters. 
(4) The horizontal distribution of points reflects the magnitude of impact; a wider distribution indicates a 

greater impact. 

 

Fig. 11 Fault analysis of piston ring wear (F4) based on SHAP values: (a) Waterfall plot; (b) Beewarm plot; (c) Interaction plot; (d) 
Dependence plot. 
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Fig. 11(b) reveals that depressed values of P11, P12, P07, and P06 significantly influence the model's 
predictive tendency toward identifying fault type F4. To thoroughly investigate the interdependencies among 
thermodynamic parameters, this study further calculates the SHAP interaction values. The six most influential 
parameter interactions are presented in Fig. 11(c), with detailed visualizations of the specific interactions 
between P11-P12 and P06-P07 provided in Fig. 11(d). The information in the dependence plots is interpreted 
as follows: 

(1) Each point corresponds to the prediction for an individual sample. 
(2) The x-axis represents the actual value of the parameter. 
(3) The y-axis displays the SHAP value of the parameter. 
(4) The variations in color reflect the value of the parameter with which it interacts. 
The results reveal significant positive correlations between P11-P12 and P06-P07, consistent with 

fundamental thermodynamic principles. When integrated with thermodynamic modeling results (see Fig. 6k), 
the value of P11 is the lowest of all the health states. Due to the positive correlation between P11 and P12, this 
results in correspondingly reduced P12 values. Furthermore, piston ring wear is predominantly characterized 
by blow-by, where P06 and P07 exhibit negative correlations with blow-by severity. Consequently, the 
depressed values of P06 and P07 serve as effective indicators for identifying piston ring wear conditions. 

5. Conclusion 

The integration of data-driven methodologies with model-based approaches is a significant task in enhancing 
both simulation reliability and model interpretability. This paper introduces an innovative explainable fault 
diagnosis framework for marine diesel engine combustion chambers, termed the Thermodynamic Simulation-
assisted Random Forest (TSRF) method. The simulation component incorporates priori fault knowledge to 
establish five thermodynamic fault models for key combustion chamber components. Within the diagnostic 
framework, SHAP values are synergistically combined with thermodynamic modeling to facilitate enhanced 
diagnostic capability. The proposed method aims to provide reliable support for fault diagnosis and improve 
the interpretability of combustion chamber diagnosis results. 

The validity of the constructed one-dimensional thermodynamic model is confirmed through testing data 
collected from DCM. Additionally, the efficacy of the developed TSRF in improving diagnostic accuracy has 
been validated through experimental comparisons with conventional machine learning methods. The developed 
TSRF outperformed the KNN and SVM on the fault dataset constructed in this paper by achieving mean 
accuracy of 99.07%. 

Further, the contribution and interactions of thermodynamic parameters for a specific fault case (F4) are 
investigated and interpretive analyses of model decision results are provided. According to the findings from 
TSRF model estimation and SHAP analysis, turbocharger exhaust temperature, blow-by heat flow and cylinder 
liner heat flow are the key thermodynamic parameters affecting the fault diagnosis results. 

In future work, varying marine conditions will be investigated to further evaluate and upgrade the proposed 
method. Additionally, fault parameter settings will be optimized and integrated with varying fault severities to 
achieve more precise classification and higher diagnostic accuracy. Further, our research will focus on the 
synergistic integration of advanced models (e.g., deep learning) with various thermodynamic modeling 
approaches, including multi-zone models or models incorporating detailed chemistry. This strategy aims to 
leverage the complementary strengths of data-driven learning and physics-based modeling, enabling both 
enhanced predictive accuracy and robust physical interpretability in marine diesel engine fault diagnosis. 
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