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Abstract

Aiming at the challenges that traditional intelligent fault diagnosis methods of marine diesel engines often suffer
low generalizability due to the lack of fault training samples, as well as poor explainability due to the insufficient
incorporation of domain knowledge on fault mechanism, this paper develops a Thermodynamic Simulation-
assisted Random Forest (TSRF), which reveals fault characteristics through thermodynamic simulations and
incorporates them as prior knowledge when designing the intelligent fault diagnosis model. Firstly, five
thermodynamic fault models are developed by fine-tuning the essential system parameters to correspond with
the distinct attributes of different faults. Then, potential thermodynamic indicators of combustion chamber
component degradation are identified through numerical simulation results. By calculating SHapley Additive
exPlanations (SHAP) values, a parameter selection process is conducted to retain only those variables
demonstrating significant correlations with fault states. Finally, the selected parameters are leveraged to assess
the condition of the combustion chamber and input into the fault diagnosis model. The proposed TSRF achieved
exceptional classification performance, illustrating a mean accuracy of 99.07% on the fault dataset constructed
in this paper. The estimation results of the model are interpreted from the local and global perspectives based
on SHAP values. As a result, turbocharger exhaust temperature, blow-by heat flow, and cylinder liner heat flow
are found to contribute significant to fault predictions.

Keywords: marine diesel engine, thermodynamic model, fault identification, Random Forest, explainability.

1. Introduction

The diesel engine is a critical component of the ship's propulsion system, with complicated internal structures
and numerous interrelated parts [1]. In particular, the combustion chamber is crucial to engine functionality,
and it comprises of the cylinder head, cylinder liner, piston, and other components [2]. Given its harsh
operational environment, the combustion chamber is one of the most vulnerable sections in diesel engines [3—
5]. Combustion chamber faults may adversely damage engine performance and safety, making fault detection
vital for engine management. By monitoring thermodynamic parameters, diagnostic models could identify and
locate defects, giving crucial information for maintenance scheduling, repair plan optimization, and cost control
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[6-9]. However, diagnosing faults in practical ship operations remains challenging due to factors such as limited
fault data and nonquantitative prior knowledge.

Currently, fault diagnosis methods for marine diesel engines are primarily categorized into three types, as
presented in Table 1: : model-based, data-driven, and hybrid approaches [9—11]. In the model-based methods,
a mathematical model of the diesel engine is constructed by merging physical laws, engineering knowledge,
and operational principles. Then, the simulation software is applied to evaluate the model's performance under
normal and faulty conditions. For example, He et al. [12] constructed a turbocharger efficiency model based on
a thermodynamic mechanism and applied the T test statistic for fault detection in diesel engines. Ricardo et al.
[13] proposed thermodynamic fault models for the intake system, injection system, compression ratio, and fuel
injection, applying the Levenberg-Marquardt method for parameter estimation to diagnose faults. Antonio et al.
[14] developed a fault simulator based on a one-dimensional thermodynamic model of a diesel engine to
accurately identify the symptoms in various fault states. Tang et al. [15] proposed a two-stroke marine diesel
engine model to predict in-cylinder pressure in real-time and simulated the behavior under a single-cylinder
fault condition. Moussa et al. [16] investigated a marine diesel engine model based on physical, semi-physical,
mathematical, and thermodynamic equations, achieving the simulation of various faults. Lamaris et al. [17]
developed a thermodynamic-based multi-area combustion model and a fault detection approach that leverages
changes in model constants, which were applied to the fault diagnosis of the main propulsion and auxiliary
diesel engine units of ships. However, constructing an accurate physical-mathematical model for marine diesel
engines is exceedingly problematic under current conditions. Such models are often sophisticated and involve
substantial subject expertise, encountering issues dealing with nonlinearities and interactions between various
variables and environmental factors.

Data-driven methods bypass the need for detailed physical modeling of diesel engines. Instead, pre-processed
data is input into a machine learning model, enabling it to learn fault characteristics and identify potential faults
autonomously. For example, Hu et al. [18] processed acoustic emission signals through a one-dimensional CNN
to achieve fault diagnosis of diesel engine exhaust valves with different degrees of blow-by. Yuankai et al. [19]
proposed a Recurrence Plot and CNN-based approach (RP-CNN) for identifying the wear mechanisms of main
bearings in marine diesel engines. Guo et al. [20] proposed a multi-scale and multi-view domain adversarial
network (MMDAN) for identifying various fault types in diesel engines. Wang et al. [21] designed a Random
Convolutional Neural Network (RCNN), a structure capable of automatically extracting discriminative features
from vibration signals to identify the health states of diesel engines accurately. Wang et al. [22] proposed a
novel hybrid fault monitoring method that integrates flow learning with isolation forests, enabling the model to
achieve more accurate diagnostic results even with minor sample conditions. However, data-driven models rely
on learning features from data rather than explicit physical laws, which makes it challenging to explain their
decision-making rationale—especially in complicated models like deep learning. The intricate non-linear
relationships and high-dimensional feature interactions often render these models opaque, turning them into
black boxes where the reasoning behind decisions is difficult to interpret.

The hybrid approaches generally begin with a physical-mathematical fault model, then its calibration using
experimental data. Diagnosis is then conducted based on simulation output or experimental and simulated data.
For example, Yu et al. [23] constructed a digital physical model based on virtual prototyping and multi-body
dynamics. By applying a data-driven approach, they extracted and selected features from actual and simulated
signals to detect planetary gearbox faults via feature matching. Gryllias et al. [24] proposed a hybrid two-stage
one-against-all support vector machine method based on physical model training to diagnose rolling bearing
faults automatically. Li et al. [25] developed a transfer learning approach based on deep learning, which trains
models using simulated data and applies them to fault diagnosis in real-world physical processes. Yan [26]
proposed a generative adversarial network model incorporating a physical model for fault detection and
diagnosis in air handling units. However, these approaches lack a detailed analysis of the decision-making
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process of models when integrated with the physical model. Instead, the physical models primarily serve as
tools for fault simulation and sources of complementary data.

Table 1 Summary of previous studies

Method Type Advantages Limitations

Model-Based Methods 1. Clear physical interpretation. 1. Lack of flexibility and adaptability.
2. Suitable for systems with well-understood 2. Struggle with complex nonlinear systems.
mechanism.

Data-Driven Methods 1. High adaptability. 1. Highly dependent on data quality and quantity.
2. Suitable for big data scenarios. 2. Poor explainability.

Hybrid Methods 1. Relatively higher accuracy. 1. High model complexity.
2. Better interpretability. 2. High computational cost.

Aiming at the above problems, this paper develops a fault diagnosis method for combustion chamber
components, named Thermodynamic Simulation-assisted Random Forest (TSRF). Firstly, a one-dimensional
thermodynamic model of a marine diesel engine is established. The model parameters are then calibrated with
testing data, facilitating the simulation of five faults in combustion chamber components. To minimize
computational complexity, SHAP values are calculated for each thermodynamic parameter, and those with high
SHAP values are considered as key parameters. Finally, the selected parameters are leveraged for classification
using Random Forest (RF), and the results are compared to different machine learning as well as feature
selection methods. The evaluation framework incorporates both local and global interpretation perspectives
based on SHAP values. Local interpretation identifies critical parameters contributing to individual fault sample
through detailed waterfall plot analysis, while global significance assessment employs beeswarm plots to
evaluate parameter contributions across the entire fault state. Further, parameters interaction plots and
dependency plots are presented based on SHAP interaction values. The main innovations of this paper are
summarized as follows:

(1) This paper develops a novel parameter fine-tuning method for modeling marine diesel engine combustion
chamber faults, including head cracking (F1), piston ablation (F2), liner wear (F3), ring wear (F4), and ring
sticking (F5). Traditional methods typically emphasize microscopic material properties under fault conditions,
which are often associated with extended simulation durations, intricate processes, and a limited scope of
thermodynamic parameter analysis. In contrast, the proposed method reproduces the fault characteristics
through parameter fine-tuning to obtain a rapid system response to combustion chamber faults.

(2) This study evaluates the suitability of the SHAP method for parameter selection in combustion chamber
fault diagnosis, comparing its performance with other feature selection methods, including the Chi-Square Test,
Recursive Feature Elimination (RFE), and the Gini index. Through the computation of SHAP values, a
quantitative assessment of parameter importance is conducted, enabling the meticulous selection of high-
contribution parameters. Furthermore, the research incorporates advanced visualization techniques to elucidate
the model's decision-making process, providing transparent insights into the specific mechanisms through
which critical parameters influence fault classification outcomes.

(3) This paper presents a novel dual-perspective interpretation through data-driven method assisted by
thermodynamic model in the decision-making process of RF for combustion chamber fault diagnosis. By
leveraging the mechanistic foundation and physical interpretability provided by thermodynamic models, this
method provides a novel insight into interpretable fault diagnosis for marine diesel engine combustion chamber
faults.
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The rest of the paper is arranged as follows: In section 2, the proposed TSRF is introduced, including
thermodynamic modeling, parameter selection and interpretability methods. In section 3, the simulation results
are theoretically analyzed. Results and discussions are presented in section 4.

2. Methodology
2.1. Overview

The proposed TSRF method for marine diesel engines is illustrated in Fig. 1. Firstly, a one-dimensional
thermodynamic model is constructed, and the model is calibrated with data acquired from the Data Collecting
Module (DCM). Secondly, five representative combustion chamber fault scenarios are simulated through fine-
tuning of critical system parameters, enabling the extraction of potentially diagnostic-relevant thermodynamic
indicators. Then, RF is leveraged for preliminary fault identification, followed by SHAP value computation to
facilitate the selection of optimal parameter subsets for diagnostic analysis. The final stage incorporates multi-
perspective model interpretation, combining SHAP value analysis with thermodynamic model insights to
provide comprehensive diagnostic understanding.
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Fig. 1. Structure of TSRF
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2.2. One-dimensional thermodynamic model of marine diesel engine

2.2.1. Model description

The structure of the one-dimensional thermodynamic model of the diesel engine is shown in Fig. 2, including
the system boundary (SB1, SB2), intake and exhaust manifolds (PL1, PL2), turbocharger (TC1), intercooler
(CO1), and six cylinders (C1 to C6). In addition, six monitoring points (MP1 to MP6) are established for
monitoring critical parameters. For piping, pipe 1 indicates the compressor intake pipe, pipe 2 refers to the
intercooler intake pipe, and pipe 3 is the intercooler exhaust pipe. Pipes 4 to 9 correspond to the intake pipes of
the cylinders, while pipes 10 to 15 are the exhaust pipes of the cylinders. Pipe 16 is connected to the
turbocharger's inlet pipe, and pipe 17 is the exhaust pipe of the turbocharger. The main specifications of the
diesel engine are shown in Table 2.
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Fig. 2. One-dimensional thermodynamic model of the diesel engine
Table 2. Engine specifications
Engine Characteristic Specifications Engine Characteristic Specifications
Cylinder bore 620 mm Number of cylinders 6
Piston stroke 2658 mm Arrangement of cylinders Inline
Speed range 77 to 103 rpm Firing Order 1-5-3-6-2-4
Mean piston speed 9.13 m/s Cycle Type 2-stroke
Power 2900 kW Stroke / bore ratio 4.29

2.3. Thermodynamic fault modeling

This study categorizes the health states of combustion chamber components into six distinct conditions,
designated as FO through F5: normal state (F0), head cracking (F1), piston ablation (F2), liner wear (F3), ring
wear (F4), and ring sticking (F5). This subsection systematically elucidates the parameter fine-tuning method
for the five fault states (F1-F5), followed by a comprehensive analysis of their respective failure mechanisms
and underlying physical principles.

2.3.1. Cylinder head cracking (F1)

The cylinder head cracking is numerically investigated by fine-tuning the surface temperature of the cylinder
head. Under operational conditions, the cylinder head experiences significant thermomechanical loading,
predominantly in the combustion chamber-adjacent regions [27]. The initiation and propagation of cracks in
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these critical zones substantially degrade the structural integrity, thereby exacerbating localized stress
concentration phenomena. Moreover, crack formation detrimentally affects the thermal dissipation, inducing
localized thermal runaway through compromised heat dissipation efficiency.

2.3.2. Piston ablation (F2)

The piston ablation is numerically simulated through fine-tuning two critical parameters: surface temperature
distribution and blow-by mass flow rate. The progressive degradation of piston surface material induces
substantial thermal inhomogeneity, resulting in localized temperature elevation [28]. Furthermore, the material
loss associated with thermal ablation compromises the piston-cylinder interface integrity, thereby exacerbating
blow-by phenomena through increased gas leakage pathways.

2.3.3. Liner wear (F3)

The liner wear simulation is implemented through fine-tuning the bore diameter and corresponding blow-by
mass flow characteristics. The primary wear mechanism originates from the infiltration of particulate
contaminants, typically resulting from air filtration system failure or sealing interface degradation. These
abrasive particles induce progressive material removal from the liner surface, manifesting as measurable
roundness deviations and localized bore diameter enlargement. Such geometric alterations significantly degrade
the sealing efficacy of the piston-liner interface, consequently amplifying blow-by phenomena through
enhanced gas leakage pathways [29].

2.3.4. Ring wear (F4)

The piston ring wear simulation is conducted through controlled modulation of blow-by mass flow
parameters. The predominant wear mechanism stems from the presence of abrasive contaminants within the
cylinder assembly, which induce progressive material degradation of the ring surface. This wear process leads
to measurable geometric deviations, particularly out-of-roundness deformation of the ring end face. Such
geometric imperfections significantly compromise the ring-cylinder sealing integrity, thereby establishing a
positive feedback loop that exacerbates blow-by phenomena through increased blow-by [30].

2.3.5. Ring sticking (F5)

The ring sticking is simulated through fine-tuning three critical parameters: bore diameter, liner surface
temperature, and blow-by mass flow. This fault mode primarily originates from three contributing factors:
excessive carbonaceous deposits, insufficient lubrication film formation, and sludge accumulation, which
impede normal ring mobility and degrade sealing performance [31]. Under normal operating conditions, piston
rings serve as essential thermal conduits, facilitating efficient heat transfer from the piston crown to the cylinder
walls. However, ring sticking induces significant thermal resistance at the ring-liner interface, leading to
substantial temperature elevation at the piston surface. Furthermore, this condition creates abnormal frictional
interactions between the ring and liner surfaces, resulting in accelerated wear mechanisms and potential surface
scoring of the cylinder liner.

2.4. Selection of thermodynamic parameters via Tree SHAP analysis

This paper presents a process for thermodynamic parameter selection leveraging SHAP values, as illustrated
in Fig. 3. Firstly, potentially diagnostic-relevant thermodynamic parameters are filtered from the fault
simulation output to comprise the preliminary dataset. Then, the dataset is input into RF for pre-identification.
Building upon initial results, the Tree SHAP method is employed to quantitatively evaluate the contribution
weights of individual parameters through SHAP value computation. The final stage involves the selection of
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optimal feature subsets based on parameter importance rankings, generating a refined dataset that is
subsequently re-analyzed through the RF model for enhanced diagnostic accuracy.

Table 3 Comparison of feature selection methods

Method

Type Computational ~ Model Interaction Nonlinear Interpretability Fairness
Cost Dependency  Effects Relationships
Chi-Square Test  Filter Low None X X Statistical Low
Significance

RFE Wrapper High Logistic N X Model Weights Medium
Regression

Gini index Embedded Medium Random N N Split Gain Medium
Forest

SHAP Explainability =~ High Model- N N Global + Local High
Agnostic Contributions

Compared to conventional feature selection methods, including the Chi-Square Test, RFE and Gini index,
SHAP offers a comprehensive evaluation framework for thermodynamic parameter significance. This advanced
method not only quantifies parameter importance but also elucidates directional influences (positive/negative
effects), reveals parameter interaction dynamics, and characterizes sample distribution patterns. Such
multifaceted analysis provides robust empirical support for investigating underlying physical mechanisms
through thermodynamic modeling and uncovering potential parameter correlations. The comparative analysis
between SHAP-based feature selection and traditional methods is presented in Fig. 3.

In this subsection, the calculation of SHAP values is presented in detail, concentrating on describing the core
concept and computational process of the improved method for tree structures, known as Tree SHAP.
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Fig. 3. SHAP-based parameter selection process
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2.4.1. SHAP value

SHAP has been extensively employed in machine learning, including feature selection and enhanced model
interpretability, etc [32-38]. Within the SHAP value computation process, the concept of contribution value
serves as a quantitative metric to characterize the influence of individual thermodynamic parameters on model
predictions. The marginal contribution A,y (i,S) of a thermodynamic parameter i, when introduced to a
specific parameter combination (as illustrated in Fig. 4a), is mathematically expressed through the following
equation [39]:

Ay (@:8) = fF(SUL) - f(S) (1)

where S represents the set of parameters excluding parameter i; f(S) is the contribution generated by the set S;
f(S U {i}) is the contribution when parameter i is added.

After evaluating all possible parameter combinations, the average incremental contribution of parameter i,
known as the SHAP value ¢;, can be calculated as follows [40]:

S|W(p-|S|-D! .
o= | S1'(p=]S] ).AW(Z’S) .

SCcN\{i} p!

where N is the set of all parameters; S is a subset of the parameters used in the model; N \ {i} encompasses all
feasible parameter combinations excluding the target parameter i; p denotes the number of parameters in the
subset S.

During the evaluation of a specific parameter combination S, the aggregate assessment is obtained through
the linear superposition of individual parameter SHAP values, as illustrated in Fig. 4(b). Consequently, the
composite SHAP value for parameter combination S is mathematically determined by the following
formulation:

M
=0, +> o 3)
i=1

where: @, is the baseline value, which represents the average output of the model without any parameter;
>M | @; is the sum of SHAP values predicted by each parameter for the model.

2.4.2. Tree SHAP

Tree SHAP represents an optimized computational approach specifically developed for tree-based models,
including Random Forest and other tree-structured algorithms [41-43]. This method capitalizes on the inherent
hierarchical architecture of tree models to achieve substantial computational efficiency gains compared to
conventional SHAP value computation methods. As shown in Fig. 4(c), traditional SHAP value calculation
requires exhaustive traversal of all possible parameter combinations, leading to significant computational
overhead and exponential complexity growth with increasing parameter dimensionality.

The Tree SHAP algorithm fundamentally differs by computing marginal contributions exclusively along
decision paths that satisfy specific input conditions (illustrated by the i; > 5 condition in Fig. 4d). This strategic
optimization eliminates the necessity for complete parameter combination enumeration, thereby achieving
remarkable computational efficiency improvements. For a given parameter i within a decision tree structure,
the Tree SHAP-based value is computed through the following mathematical formulation [44]:
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o S| (p—|S|-D! .
(pl,:z Z | Si(p |' =) 'Aval(PjalaS) @
Jj=1 SSP\ i} p:

where T represents the total number of decision trees in the ensemble model; P; denotes the complete set of
decision paths within the j-th tree structure; P; \ {i} encompasses all feasible parameter combinations excluding
the target parameter i; S corresponds to the selected feature subset utilized in the model; and p indicates the
cardinality of the parameter subset S.

2.5. Classification model

This paper employs RF as the base model for both parameter selection and fault classification tasks. This
ensemble learning method shows superior capability in handling multi-class classification problems with
limited sample sizes, while maintaining low preprocessing requirements. These characteristics render RF
particularly effective for the complex multi-parameter fault diagnosis scenarios addressed in this research. Due
to the continuity of thermodynamic parameters, a discretization process is implemented to transform these
variables into appropriate formats compatible with the decision tree's input specifications.
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2.5.1. Parameters discretization

The decision tree, serving as the fundamental component of RF, operates through recursive partitioning of
the feature space to generate predictive outcomes. For a given sample set D, where p;, represents the proportion
of samples belonging to the k-th class (k = 1,2, ..., N), the information entropy of D is defined as [45]:

N
Ent(D) = _Z Py 10g2 Pr (5)

k=1

When partitioning sample set D using a discrete attribute a = {a?, a?, ..., a"}, which generates V distinct
branch nodes, the subset of samples in the v-th branch node that satisfy the condition a = a” is denoted as D".
The information entropy of D¥ can be computed using Equation (5). To account for varying sample sizes across
different branch nodes, a weighting factor |D¥|/|D]| is applied, enabling the calculation of information gain
achieved through attribute-based partitioning [46]:

V v
Gain(D,a) = Ent(D)- Y 1D |Ent(D”) (6)

v=1 |

The magnitude of information gain serves as a quantitative indicator of an attribute's effectiveness in data
category discrimination and uncertainty reduction. Attributes demonstrating higher information gain values are
consequently prioritized for selection as splitting nodes within the decision tree structure.

Regarding thermodynamic parameters (e.g., temperature, pressure, and rotational speed), a discretization
process is essential due to their continuous nature. For a given fault set D and continuous parameter P, where
P assumes N distinct ordered values {P!, P?,...,PN} in descending order, an optimal division point t is
established. This division point segregates the samples into two subsets: D, (samples with parameter values <
t) and D* (samples with parameter values > t). Notably, any division point ¢t within the interval [P!, P‘*1]
yields identical partitioning results for adjacent values P; and P; ;. Therefore, for parameter P, the candidate
division points can be systematically determined by computing the median value (P' + P**1)/2 for each
interval [P%, P“*1], resulting in the complete set of candidate division points Tp:

i i+1
T, = %HQSN—I )

Consequently, the information gain achieved through partitioning the fault dataset D using parameter P can
be expressed as [47]:

Gain(D, P) = max,_, Gain(D, P,t)
D} 8
=max,_, Ent(D)- z EY |Ent(Dt/l) ®
Ae{—+} |D|

When the computed Gain (D, P) is sufficiently high, parameter P demonstrates superior discriminative
capability and is consequently prioritized for selection as a splitting node in the decision tree architecture.
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2.5.2. Random forest

RF is an ensemble learning method that has demonstrated significant efficacy in fault diagnosis applications
[48-51]. This algorithm enhances predictive performance through the strategic aggregation of multiple
independent decision trees, effectively mitigating individual tree biases and variances. For a given sample
characterized by thermodynamic parameter values x;, x, ... xy the collective prediction Ty (x) generated by
an ensemble of n independently trained decision trees can be expressed as [52]:

T(x)= %Z Ty(x) )

Within the classification framework of random forests, two predominant metrics are conventionally
employed for feature selection: the Gini index and entropy-based information gain. This research adopts the
Gini index as the primary feature selection criterion. The Gini index, quantified within the interval [0, 1], serves
as an inverse indicator of feature importance, where 0 signifies maximal information gain (denoting the most
significant parameter) and 1 represents minimal information gain (indicating the least significant parameter).
The mathematical formulation of the Gini index is expressed as follows [53]:

C
Gini(D)=1-Y p} (10)

i=1
where p; is the proportion of category i in the dataset, and C is the number of categories.
3. Simulation of thermodynamic model

3.1. Data collection

3.1.1. Testing dataset

The testing dataset employed in this study is acquired from the mainframe sensor system of a prominent
shipbuilding equipment manufacturer in China. The raw data collection is facilitated through an independently
developed Data Collection Module (DCM) integrated with the marine propulsion system, as shown in Fig. 5.
The DCM system implements hierarchical acquisition architecture, enabling synchronous data collection from
multiple subsystems, including fast signal unit, tail gas treatment unit, and monitoring system.

The system records raw data at 10-second intervals, storing the information in an onboard database. To
mitigate noise interference, a moving average is computed every 60 seconds. Following data encryption, the
system transmits compressed CSV files containing average data from 720 sampling points to a shore-based
server via maritime satellite every 12 hours, ultimately forming a six-month time-series dataset of marine diesel
engine operations. The raw data undergoes rigorous preprocessing, including elimination of blank and duplicate
records, interpolation of missing values, and anomaly detection and correction through a sliding window
algorithm.

Following data preprocessing, an initial screening is conducted by referencing the vessel's operational
manual, during which thermodynamic parameters exhibiting low relevance to the marine diesel engine are
eliminated. Subsequently, the dataset undergoes further refinement by aligning with the specific data types that
can be effectively monitored by the simulation model. This two-stage screening process establishes a robust
foundation for subsequent model validation and performance evaluation.
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Fig. 5. Structure of the Data Collecting Module

3.1.2. Experimental dataset

The experimental samples are extracted from simulation results encompassing a complete operational cycle
of the diesel engine model, with each health state comprising 120 samples. Given the substantial variation in
value ranges and measurement scales across different thermal parameters, direct utilization of raw data would
introduce bias in the training process, particularly in weight assignment. To address this issue, min-max
normalization is implemented to standardize the parameter value ranges, ensuring equitable contribution from
all features during model training. Following normalization, samples are randomly divided into a training
dataset (70%) and a testing dataset (30%) proportionally.

3.2. Model validation

A representative data window is selected from the testing dataset during stable speed of the engine, and the
values of key thermal parameters are averaged to validate the model. As shown in Table 4, the thermodynamic
parameters from simulation results exhibit less than 5% deviation from experimental measurements under
nominal operating conditions. This level of agreement confirms the model's reliability, enabling its effective
utilization for both fault simulation scenarios and comprehensive diesel engine performance analysis.

Table 4. Validation of model validity

Item Experimental value Simulation value Error

Power (kW) 2900 2895 -0.17%
Engine speed (rpm) 86.011 90 +4.64%
Temperature of exhaust gas before turbocharger (°C) 378.953 370.557 -2.22%
Temperature of exhaust gas after turbocharger (°C) 240.464 230.254 -4.25%
Inlet cooling water temperature of air cooler (°C) 36.101 37.521 +3.93%
Outlet cooling water temperature of air cooler (°C) 45.661 44.385 -2.79%
Temperature of cylinder liner (°C) 122.299 125.512 +2.63%
Temperature of exhaust gas (°C) 306.897 301.525 -1.75%
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3.3. Fault modeling

This paper develops a systematic parameter fine-tuning method to emulate specific combustion chamber
fault states, including head cracking (F1), piston ablation (F2), liner wear (F3), ring wear (F4), and ring sticking
(F5). However, the established parameter ranges require further optimization to address potential discrepancies
between simulation outcomes and actual operational conditions. Future research directions will focus on
conducting detailed investigations into varying severity levels within individual fault modes, thereby enhancing
the diagnostic precision and practical applicability of the model. Detailed information regarding the parameter
calibration for each fault type can be found in Table 5.

Table 5. Details of fault parameters

Parameters
Label Fault type Blow-by mass Bore (mm) Piston surface  Cylinder head
flow (Kg/s) temp. (°C) surface temp. (°C)
FO Normal 0 620 276.85 246.85
F1 Head cracking 0 620 276.85 346.85
F2 Piston ablation 0.01 620 376.85 246.85
F3 Liner wear 0.03 620.1 276.85 246.85
F4 Ring wear 0.02 620 276.85 246.85
F5 Ring sticking 0.02 620.1 326.85 246.85

3.4. Results of fault simulation

In this paper, 14 thermodynamic parameters that exhibit significant diagnostic potential for combustion
chamber condition assessment are identified. Details about these parameters are presented in Table 6. The
variations of these parameters under various fault conditions are depicted in Fig. 6(a)-(n), with the crank angle
represented on the horizontal axis and the amplitude of the parameters displayed on the vertical axis.

Table 6. Thermodynamic parameters of the simulation output

Label Parameters Unit
PO1 Cylinder Pressure Pa
P02 Cylinder Temperature K
P03 Piston Wall Heat Flow J/deg
P04 Head Wall Heat Flow J/deg
P05 Liner Wall Heat Flow J/deg
P06 Blow-By Heat Flow J/deg
P07 Blow-By Mass Flow Kg/s
P08 Turbine Power J/s
P09 Pressure of Exhaust Pa
P10 Temperature of Exhaust K
P11 Pressure of Exhaust Gas before Turbocharger Pa
P12 Temperature of Exhaust Gas before Turbocharger K
P13 Pressure of Exhaust Gas after Turbocharger Pa
P14 Temperature of Exhaust Gas after Turbocharger K

13
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4. Results and discussion
4.1. Parameters selection

Given the extensive array of thermodynamic parameters in diesel engines, comprehensive monitoring of all
parameters for diagnostic purposes proves impractical. Consequently, a parameter selection process is
implemented to identify the most diagnostic relevant parameters. This approach achieves an optimal balance
between minimizing the number of monitored parameters and maintaining robust fault differentiation capability.

The SHAP values of the 14 parameters in six health states are shown in Fig. 7(a) and summarized in Fig.
7(b), with the horizontal axis denoting the mean SHAP wvalues, and the vertical axis listing the 14
thermodynamic parameters ordered by importance from highest to lowest. Fig. 7(c) further illustrates the
distribution of the percentage of importance scores for each parameter. As a result, eight core parameters with
the highest cumulative contribution rate are selected for fault identification, including: P14 (Temperature of
Exhaust Gas after Turbocharger), P05 (Liner Wall Heat Flow), P06 (Blow-By Heat Flow), P07 (Blow-By Mass
Flow), P11 (Pressure of Exhaust Gas before Turbocharger), P12 (Temperature of Exhaust Gas before
Turbocharger), P03 (Piston Wall Heat Flow), and P04 (Head Wall Heat Flow).
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Fig. 6. Results of fault simulation: (a) Cylinder pressure; (b) Cylinder temperature; (c) Piston wall heat flow; (d) Head wall heat flow; (e)
Liner wall heat flow; (f) Blow-by heat flow; (g) Blow-by mass flow; (h) Turbine power; (i) Pressure of exhaust gas before turbocharger;
(j) Temperature of exhaust gas before turbocharger; (k) Pressure of exhaust gas after turbocharger; (1) Temperature of exhaust gas after
turbocharger; (m) Pressure of exhaust; (n) Temperature of exhaust.
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4.2. Model evaluation

Given the limited sample size, this study implements an optimized hyper-parameter tuning strategy
combining grid search method with five-fold cross-validation for all machine learning models under comparison.
The optimal parameter configurations for K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and
RF are presented in Table 7. The evaluation metrics across six health states for both the original dataset and the
optimized parameter subset, including precision, recall, F1 score, and accuracy, are presented in Table 8. The
confusion matrices and Precision-Recall curves for each model's performance on these datasets are illustrated
in Fig. 8 and Fig. 9, respectively.

The confusion matrices reveal distinct performance of models: KNN exhibits relatively low accuracy in
recognizing F3-F5 fault conditions on the original dataset, as shown in Fig. 8(a). However, its diagnostic
capability for these fault conditions shows noticeable improvement when utilizing the optimal parameter subset,
as depicted in Fig. 8(d). SVM exhibits suboptimal performance in identifying F1 and F4 faults on the original
dataset (see Fig. 8b), with its recognition accuracy for these faults improving on the optimized parameter subset,
albeit at the cost of reduced performance for F3 detection, as shown in Fig. 8(e). In comparison, RF initially
underperforms in F5 fault recognition on the original dataset (see Fig. 8c) but achieves superior overall
performance across all six health states when employing the optimal feature subset, as shown in Fig. 8(f). While
its ability to differentiate between F4 and F5 faults is slightly diminished, it is noteworthy that both fault types
are piston ring-related and exhibit similar system impact patterns. The evaluation shows that RF outperforms
both SVM and KNN on the experimentally constructed fault dataset.

Table 7 Selection of hyperparameters for models

Model Core hyperparameters for training

KNN n_neighbors: 3 metric: manhattan ~ weights: distance
SVM C: 1.0 kernel: linear gamma: scale

RF n_estimators: 20 max_depth: None  max_features: sqrt

Table 8. Comparison of the performance of various models.

Performance evaluation (on the original dataset, %) Performance evaluation (on the optimal subset, %)
Model

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy
KNN 90.94+3.72 89.81+3.43 90.03+3.72 89.81+£3.73 95.141+3.10 944414323 94541325 94.44+3.24
SVM 92914233 9213 £242 91.90+2.02 92.13%2.72 95.55+2.13 94444273 94411152 94.44+1.85
RF 94.661+0.73 9444 £0.52 94411033 94441046 99.12+045 99.071+0.66 99.071+0.51 99.071+0.46




This is the author's accepted manuscript. The final version is available at 10.1016/j.measurement.2025.117252

36 36 — 36

Fo. 0 0 0 0 0 Fo 0 0 0 0 0 Fo{ 8 o 1 0 0 0
30 30 F30

F1{ o . 0 0 0 0 F14 0 n 6 0 0 0 F1{ o 3 o 0 0 0
2 24 L 24

% F2{ 0 0 . 0 0 0 g F24 o 0 0 0 0 (E; F2{ 3 o 38 o 0 0
2rad o 0 0 . 10 o * 2r3d o 0 0 0 0 * 2r3d o 0 1.3 | o 0 *

= = =

12 12 b2

Fa{ o 0 0 4 . 2 F44 0 0 o 6 . 4 Fa{ o 0 0 o |3 1
6 6 e

F54 © 0 0 0 6 . F54 o 0 0 0 1 F54 © 1 0 0 5 30
" 0 . . : 0 ; ; ; . —ILLlo

F2 F3 F4 F5
Predicted label

(c)

F2 F3 F4 F5 FO F1 F2 F3 F4 F5 FO F1
Predicted label Predicted label

(a) (b)

FO F1

36 36 —T 36

FO . 0 1 0 0 0 FO 0 0 0 0 0 Fo4{ 38 o 0 0 0 0
30 30 F30

F14 o . 0 0 0 0 F1{ o 0 0 0 0 F14{ o % 0 0 0 0
24 24 L2a

% F2{ 1 0 . 0 0 0 g F2{ o 0 0 0 0 % F2{ o o 3 o 0 0
3 F34 o 0 0 . 5 0 * 2 F3{ o 0 0 . 10 0 " 3 F34{ o 0 0 3% 0 0 *

= [ [=

12 12 L2

F44 o 0 0 1 . 0 F4{ o 0 0 0 1 F44 o 0 0 0 34 2
6 6 L6

F54 o 0 0 0 4 F54 o 0 0 0 1 35 F54 o 0 0 0 0 36
T T T T T 0 0 Llo

FO F1 F2 F3 F4 F5 FO F1 F2 F3 F4 F5 FO F1 F2 F3 F4 F5

Predicted label Predicted label Predicted label
(d) (e) ®
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To establish a comprehensive comparative analysis, multiple feature selection methods are implemented,
with the resulting optimal parameter subsets from each method visually presented in Fig. 10. Utilizing RF as
the classification model, each optimized parameter subset is evaluated for diagnostic performance, with average
accuracy summarized in Table 9. The results reveal that the parameter subset obtained through SHAP exhibits
superior diagnostic capability compared to subsets derived from alternative feature selection methods.

Chi-Square Test
[Po1 [ Po2 | Po3 |[ Po4 ][ Pos |[ Pos || Po7 ][ Pos ][ Pog |[ P10 |[ P11 ][ P12 ][P13][P14]

RFE
[ Po1 ][ Po2 | Po3 [ Po4 ][ Pos |[ Pos || Po7 |[Pos ][ Pog |[ P10 |[ P11 |[ P12 ][ P13 ][ P14 |

Gini index
[Po1 [ Po2 ][ Poa |[ Po4 ][ Pos |[Pos | Po7 |[ Pos ][ Pog | P10 [ P11 |[P12][ P13 ][ P14]

SHAP
[Po1 ][ Po2 ][ Po3 ][ Po4 ][ Pos |[ Pos |[ Po7 |[ Pos ][ Pog | P10 |[ P11 |[P12][ P13 ][ P14

[ High-contribution parameters [___| Low-contribution parameters

Fig. 10 Optimal subset of different feature selection methods

Table 9 Accuracy of RF using different feature selection methods

Method Average accuracy (%)
Chi-Square Test 78.514 0.53
RFE 81.62+ 0.22
Gini index 88.95+ 0.45
SHAP 99.07+0.21

4.3. Interpretation assisted by thermodynamic model

To demonstrate the enhanced interpretability assisted by thermodynamic modeling, this study employs
piston ring failure (F4) as a representative case study. The analysis adopts a dual-scale approach, initially
examining the model's decision-making mechanism at the individual sample perspective, followed by a global
perspective of the fault characteristics.

4.3.1. Individual sample analysis

The waterfall plot is leveraged as an effective visualization tool for analyzing individual sample significance
assessment, as illustrated in Fig. 9(a). The information in the waterfall plot is interpreted as follows:

(1) The waterfall plot begins at the bottom with the expected value E[f (x)] of the model outputs.

(2) Each horizontal bar quantitatively represents a parameter's contribution magnitude and direction, with
red bars indicating positive contributions and blue bars denoting negative influences.

(3) The terminal value f(x) is computed through the algebraic summation of all individual parameter
contributions, representing the model's final prediction for the specific sample.

As shown in Fig. 11(a), certain parameter values directly influence the predictive direction of the model.
However, the relationship between these values and the standard reference values is not immediately apparent.
By integrating the output from the thermodynamic model in Fig. 6, it becomes clear that at specific moments,
such as P06=1.641, P07=-0.024 and P12=728.568, the values of P14 and P04 are significantly low, which
negatively affects the model’s predictions. Given that piston ring wear exacerbates the blow-by, this
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phenomenon is incorporated into the fault model as prior knowledge. The presence of blow-by increases the
values of P14 and P04, which directly contradicts the low values observed at the sample points, ultimately
reducing the model’s prediction accuracy.

4.3.2. Global interpretation

In this paper, the evaluation results of all samples of F4 fault state are summarized, and the distribution of
the samples, induced by variations in thermodynamic parameters, are presented through beeswarm plots (see
Fig. 11b). Further, the average SHAP value for each parameter is combined with beeswarm plots, facilitating a
more intuitive representation of the importance distribution of each parameter. The information in the beeswarm
plots is interpreted as follows:

(1) The y-axis displays the parameters arranged by their level of importance, with each bar representing the
mean Shapley value for that parameter.

(2) Each sample is illustrated by a dot, where the x-axis position of the dot corresponds to the SHAP value,
and the dots are stacked within each row to depict their density.

(3) Colors are utilized to represent the raw values of the parameters.

(4) The horizontal distribution of points reflects the magnitude of impact; a wider distribution indicates a
greater impact.

25 00 25-25 00 25-25 00 25-25 00 25-25 00 25-25 00 25
SHAP interaction value b e e e e e — -

() (d)

Fig. 11 Fault analysis of piston ring wear (F4) based on SHAP values: (a) Waterfall plot; (b) Beewarm plot; (c) Interaction plot; (d)
Dependence plot.
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Fig. 11(b) reveals that depressed values of P11, P12, P07, and P06 significantly influence the model's
predictive tendency toward identifying fault type F4. To thoroughly investigate the interdependencies among
thermodynamic parameters, this study further calculates the SHAP interaction values. The six most influential
parameter interactions are presented in Fig. 11(c), with detailed visualizations of the specific interactions
between P11-P12 and P06-P07 provided in Fig. 11(d). The information in the dependence plots is interpreted
as follows:

(1) Each point corresponds to the prediction for an individual sample.

(2) The x-axis represents the actual value of the parameter.

(3) The y-axis displays the SHAP value of the parameter.

(4) The variations in color reflect the value of the parameter with which it interacts.

The results reveal significant positive correlations between P11-P12 and P06-P07, consistent with
fundamental thermodynamic principles. When integrated with thermodynamic modeling results (see Fig. 6k),
the value of P11 is the lowest of all the health states. Due to the positive correlation between P11 and P12, this
results in correspondingly reduced P12 values. Furthermore, piston ring wear is predominantly characterized
by blow-by, where P06 and P07 exhibit negative correlations with blow-by severity. Consequently, the
depressed values of P06 and P07 serve as effective indicators for identifying piston ring wear conditions.

5. Conclusion

The integration of data-driven methodologies with model-based approaches is a significant task in enhancing
both simulation reliability and model interpretability. This paper introduces an innovative explainable fault
diagnosis framework for marine diesel engine combustion chambers, termed the Thermodynamic Simulation-
assisted Random Forest (TSRF) method. The simulation component incorporates priori fault knowledge to
establish five thermodynamic fault models for key combustion chamber components. Within the diagnostic
framework, SHAP values are synergistically combined with thermodynamic modeling to facilitate enhanced
diagnostic capability. The proposed method aims to provide reliable support for fault diagnosis and improve
the interpretability of combustion chamber diagnosis results.

The validity of the constructed one-dimensional thermodynamic model is confirmed through testing data
collected from DCM. Additionally, the efficacy of the developed TSRF in improving diagnostic accuracy has
been validated through experimental comparisons with conventional machine learning methods. The developed
TSRF outperformed the KNN and SVM on the fault dataset constructed in this paper by achieving mean
accuracy of 99.07%.

Further, the contribution and interactions of thermodynamic parameters for a specific fault case (F4) are
investigated and interpretive analyses of model decision results are provided. According to the findings from
TSRF model estimation and SHAP analysis, turbocharger exhaust temperature, blow-by heat flow and cylinder
liner heat flow are the key thermodynamic parameters affecting the fault diagnosis results.

In future work, varying marine conditions will be investigated to further evaluate and upgrade the proposed
method. Additionally, fault parameter settings will be optimized and integrated with varying fault severities to
achieve more precise classification and higher diagnostic accuracy. Further, our research will focus on the
synergistic integration of advanced models (e.g., deep learning) with various thermodynamic modeling
approaches, including multi-zone models or models incorporating detailed chemistry. This strategy aims to
leverage the complementary strengths of data-driven learning and physics-based modeling, enabling both
enhanced predictive accuracy and robust physical interpretability in marine diesel engine fault diagnosis.
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